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ABSTRACT
The Traveling Salesman Problem (TSP) is one of the most well-
known NP-complete problems in computer science and the most
prominent member of the rich set of combinatorial optimization
problems, in general. In this project, four different algorithms have
been implemented to find the optimal or nearly optimal solutions of
this problem, including branch-and-bound, minimum spanning tree
(MST) approximation, neighborhood 2-opt exchange, and simulated
annealing approaches. This paper presents a general definition of
this problem and the related works. Then, all the implemented
algorithms are discussed. Finally, an empirical evaluation will be
presented to compare the capability and performance of the imple-
mented approaches.
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1 INTRODUCTION
For roughly 70 years, the TSP has served as one of the famous
challenge problems motivating various general approaches to cop-
ing with NP-hard optimization problems, and perhaps no other
problem in computer science has been as extensively studied as the
TSP. The purpose of this problem is to find a route through a given
set of cities with shortest possible length. In other words, given a
set of cities and the distance between each of them, which is also
referred to as the cost, the problem is to find the best possible way
of visiting all the cities and returning to the starting point while
minimizing the total travel distance [10].

The study of this problem has attracted many researchers from
a wide range of fields, e.g., Mathematics, Physics, Biology, or Arti-
ficial Intelligence, etc., and there is a vast amount of literature on
it, accordingly. This is due to the fact that, although this problem
is easily formulated, it exhibits all aspects of combinatorial opti-
mization and has served and continues to serve as the benchmark
problem for new algorithmic ideas like simulated annealing, tabu
search, neural networks, and evolutionary methods [16].

In this project, different algorithms are implemented in Python
to study various proposed approaches for solving this problem
including (i) one exact algorithm using branch-and-bound method,
(ii) one construction heuristic approach using MST-approximation
algorithms, which is guaranteed to be a 2-approximation algorithm,
and (iii) two local search approaches including 2-opt exchange

and simulated annealing algorithms. Each method has been briefly
discussed and is evaluated by solving multiple instances.

Accordingly, this paper is structured as follows. First, a formal
definition of the traveling salesman problem is presented in Section
2. Then, the related works are briefly studied in Section 3. Sec-
tion 4 describes the implemented algorithms. Finally, the empirical
evaluation and discussion are presented in the next sections.

2 PROBLEM DEFINITION
In the general version of TSP, the input is a complete undirected
graph G = (V , E), with a nonnegative cost ce ≥ 0 for each e ∈ E.
The goal is to compute the TSP tour with the minimum total cost,
where a TSP tour is a simple cycle that visits each vertex exactly
once.

In this project, themetric version of the TSP problem is presented,
in which the x − y coordinates of N points (vertices) are given in
the plane and the cost function ce = d(u,v) for every pair of points
defined as Euclidean distance between these two nodes u and v ,

d(u,v) =
√
(ux −vx )2 + (uy −vy )2 (1)

In this way, all edge costs are symmetric and satisfy the triangle
inequality. Therefore, the following conditions are met,

(1) Non-negativity:

∀u,w ∈ V ,d(u,w) ≥ 0 (2)

(2) Symmetry:

∀u,w ∈ V ,d(u,w) = d(w,u) (3)

(3) Triangle Inequality:

∀u,w, z ∈ V ,d(u,w) ≤ d(v, z) + d(z,w) (4)

Generally, when d(·) satisfies these three properties, it is considered
a metric. Therefore, by this definition, any Euclidean space using
Euclidean distance is a metric space.
Definition 1. A vertex tour of a graph G is a path which visits all
vertices and returns to its starting vertex, which is equivalent to a
Hamiltonian cycle on G.

Accordingly, in this project, the metric traveling salesman prob-
lem is defined as follows:
Definition 2. Given a graph G = (V , E), where V is a set of points
on a plane and E = V ×V , and d(·) defined as the Euclidean distance
between each two pairs, the traveling salesman problem is to find
a tour π = {v1,v2, . . .} such that the total cost (weight) of the tour
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is minimized,

d(π ) =

|π |−1∑
i=1

d(vi ,vi+1) (5)

3 RELATEDWORKS
In this section, the available proposed algorithm to solve TSP prob-
lem is briefly discussed.

3.1 Exact Algorithms
In general, exact algorithms solve an optimization problem to opti-
mality. However, for NP-complete problems, exact algorithms can
work reasonably fast for only small size problems. In fact, an ex-
act algorithm for an NP-hard optimization problem cannot run in
worst-case polynomial time, unless P = NP .

Brute Force algorithms are the most basic and general approach
exact algorithms. Such algorithms enumerate all possible solutions
for the problem and then check which one is the optimal one.
Thus, this approach is too computationally expensive and it is not
recommended and feasible to use for real-world and large input
size problems.

Branch-and-Bound algorithms is a slightly smarter version of
the Brute Force approaches, in which the exact solution obtained
faster by pruning the all possible solutions tree, i.e. eliminating
unnecessary cases. This elimination cut down the time spent in
searching the solutions tree.

One of the very first branch-and-bound algorithms to solve the
TSP is proposed by Little et. al. [11] in which the set of feasible
solutions (all tours) is divided into increasingly small subsets by a
procedure known as branching. For each subset, a lower bound in
the length (weight) of the tours therein is obtained and the solutions
with greater length will be eliminated. Eventually, a subset is found
that contains a single tour whose length is not greater than a lower
bound of every tour [11].

3.2 Approximation Algorithms
Although the exact algorithms, e.g. branch-and-bound method, pro-
vides the exact solutions, they are computationally expensive and
will take a long time to obtain a solution in most cases. Sometimes,
we need a quick, yet good enough solution. This is where the ap-
proximation algorithms come in. Approximation algorithms run in
polynomial time and always provide a solution close to the opti-
mal with a guaranteed performance bound. An algorithm is called
an α-approximation algorithm if it runs in polynomial time, and
always produces a solution within at most α times as the optimal
solution (in minimization problems).

In the Traveling Salesman Problem, the given graph G is a com-
plete graph with nonnegative edge costs, and the goal is to find a
minimum cost tour. The key to designing approximation algorithm
is to obtain a lower bound on the optimal value which is provided
by the minimum spanning tree (MST). Therefore, in this project,
the MST approximation algorithm is implemented and it will be
discussed in the next section.

Latest approximation algorithms can find a solution with 2-3
percent error within reasonable time [13]. Christofides’ algorithm
[3] is based on the original MST algorithm and presents a 1.5-
approximation method which provides a solution that is at most

1.5 times worse than the known optimal. This algorithm improves
the lower bound of TSP and applies the concepts of Eulerian tour to
achieve such approximation [3]. Another approach is the Nearest
Neighbor algorithm which is also known as greedy algorithm and
has approximation factor Θ(log(V )), where V is the total number
of cities [5].

3.3 Local Search Algorithms
In addition to the exact and approximation approaches, local search
algorithms have been extensively employed to solve the traveling
salesman problem. This class of algorithms iteratively improve the
current solution by searching for a better result in a predefined
neighborhood. The algorithm stops when there is no improvement
in the solution in the given neighborhood or if a certain number of
iterations has been reached [16].

A well-known local search algorithm is 2-opt which is first pro-
posed by Croes [4] in 1958, in which the main idea is considering
a route that crosses over itself and then re-ordering it so that it
does not, which can be resulted in a cheaper route. Later, 3-opt al-
gorithm and other variants, e.g. Lin-Kernighan are proposed which
are shown can obtain a result within 2-4 percent of the optimal
solution [14].

Tabu Search algorithm is another local search approach which
is known as the most widely used meta-heuristic procedure that
guides a local heuristic search procedure to explore the solution
space beyond local optimality, in which an adaptive memory is
employed to create a flexible search behavior [1]. This algorithm
starts from an initial tour as the current solution and searches
for the best solution in a suitably defined neighborhood. Then, it
updates the current solution. This procedure will continue until
certain conditions are met.

Another family of meta-heuristic algorithms employed to solve
TSP problem are Evolutionary algorithms such as genetic algorithm
[6, 9] and ant colony algorithm [7]. Such algorithms are inspired by
biological evoulution, such as reproduction, mutation, recombina-
tion, and selection, and at each iteration, the quality of the solution
is determined by a fitness function.

Another good approach to solve TSP problem is stimulated an-
nealing (SA) algorithm [17]. This approach was first independently
proposed as a search algorithm for combinatorial optimization
problems [2, 8] and then widely employed as a popular iterative
meta-heuristic algorithm to solve discrete and continuous optimiza-
tion problems. The main idea of this approach is escaping from local
optima by allowing hill-climbing moves to find global optimum
[17].

4 ALGORITHMS
In this project, four different algorithms belonging to the categories
presented in the previous section are implemented in Python. These
four algorithms are discussed in this section.

4.1 Branch and Bound
As an exact algorithm, branch-and-bound approach is implemented
in this project. In this algorithm, considering a solution tree includ-
ing all possible tours, we start from the top as the current node
for which, a bound (in the case of TSP, a lower bound) needs to be
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Algorithm 1: Recursive_Branching
Input: nNode, tour ,bound, cost, step
Result: optimumTour ,minCost , the optimum tour and the

corresponding minimum cost of traveling

1 if (step > nNode) then
2 currentCost ← cost + compute_cost(tour)

3 if (currentCost < minCost ) then
4 minCost ← currentCost

5 optimumTour ← tour

6 end
7 end
8 for (i = 1 : nNode) do
9 if (node i is not visited) then
10 currentCost ←

cost + compute_cost(tour[step-1])
11 lowerBound ← compute_bound(tour)

12 if (lowerBound + currentCost < minCost ) then
13 tour [step] ← i

14 mark i as visited

15 Recursive_Branching(nNode, tour , lowerBound,

16 currentCost, step + 1))
17 end
18 currentCost ←

cost − compute_cost(tour[step-1])
19 reset visited list

20 mark nodes i ∈ tour as visited

21 end
22 end

23 return optimumTour ,minCost

calculated which determines a bound on the best possible solution
that can be obtained if we go down this node. If the bound on the
best possible solution is worse than the current best which is com-
puted so far, then we can ignore (prune) the corresponding sub-tree
which this node is its root. Therefore, the most important feature in
this algorithm is finding a way to calculate the bound on the best
possible solution. In general, the cost through a node includes two
costs; (1) the cost of reaching the node from the root, and (2) cost
of reaching an answer from current node to a leaf. When we reach
to a node, we have the first cost computed, but for the second cost,
we calculate a bound on this cost to decide whether prune it or not.
A variety of approaches are proposed in the literature for obtaining
a bound in TSP problem. For instance, MST can easily be used as a
lower bound. A natural and faster way to calculate a lower bound
is presented in the following [12].

For a given tourT , if we consider two edges through every node
u ∈ V ans sum their costs, the overall sum for all vertices will be
twice of cost of the tour T , since we have considered every edge
twice. Therefore,

cost_of_tour =
1
2

∑
u ∈V
(sum_of_two_adjacent_edges(u))

It is also clear that sum of the two adjacent edges is always greater
than or equal to the sum of the twominimumweight adjacent edges.
Hence, the cost of any tour must be greater than or equal to the
sum of the cost of two minimum weight edged which are adjacent
to u,∀u ∈ V . Now, we can easily implement our branch-and-bound
approach. Algorithm (1) and (2) illustrate the pseudo-code of the
implemented branch-and-bound algorithm. Algorithm (2) is the
main function that calls the recursive branch-and-bound function.

Algorithm 2: Branch-and-Bound
Input: cities coordinates
Result: optimumTour ,minCost , the optimum tour and the

corresponding minimum cost of traveling

1 nodes ← extract_nodes(cities)
2 nNode ← number_o f _nodes
/* initialize all variables to call recursive

branching function */

3 initTour ← [−1, . . . ,−1]
4 initTour [0] ← 0
5 initBound ← compute_bound(nodes)

6 mark node 0 as visited

7 optimumTour ,minCost ←
Recursive_Branching(nNode, tour , lowerBound,

8 currentCost, step + 1))

9 return optimumTour ,minCost

For the time complexity, in theory, the worst case complexity
of branch and bound algorithm remains same as the brute force
approach with enumerating and checking all possible routs (which
is checking O(n2n ) sub-problems in linear time that is equal to
O(n22n ) ) because in the worst case, the algorithm may never get a
chance to prune any node in the search space. However, in practice,
this algorithm performs much better than brute force algorithm. In
this way, choosing a proper bounding method is very important in
this algorithm.

4.2 MST-Approximation
Asmentioned before, the MST algorithm can be employed to find an
approximation for the TSP problemwith approximation guarantees,
by constructing a tree walk based on the MST of the complete graph
build upon the given nodes. To find theMST, a greedy algorithm like
Kruskal’s or Prim’s algorithm can be used. Then, we run a depth-
first-search (DFS) on the MSTwhich meets every edge exactly twice
and has the cost twice as the cost of MST and therefore, is less than
or equal to two times optimum cost since the MST gives a lower
bound of TSP. In other words,

cost = 2 ×MST ≤ 2 ×OPT

Now, we can write the list of nodes in the approximated tour by
writing the first time of appearance of each node in the DFS walk.
A simple pseudo-code of the implemented MST-approximation
algorithm is presented in Algorithm (3).
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Algorithm 3: MST-Approx
Input: cities coordinates
Result: optimumTour ,minCost , the optimum tour and the

corresponding minimum cost of traveling

1 edдes ← extract_edдes(cities)
/* sort edges with respect to distances */

2 edдes ← sort(edдes)

3 MST ← Kruskal(edдes)

4 MST_deepcopy ← MST

5 tour ← ϕ

6 while (MST_deepcopy , ϕ) do
7 tour ← tour ∪MST [0]
8 nextEdдe ← f ind_next_edдe()
9 if nextEdдe , ϕ then
10 tour ← tour ∪MST [0]
11 else
12 backtrack()

13 end
14 end
15 minCost ← compute_cost(tour )

16 optimumTour ← tour

17 return optimumTour ,minCost

In general, the complexity of the MST algorithm isO(n2) and the
complexity of our DFS implementation is O(n +m) where n = |V |
and m = |E |. Therefore, the overall complexity is dominated by
O(n2). Similar to the previous algorithm, the space complexity is
O(n2) which is required to store the adjacency (distance) matrix.

Algorithm 4: UpdateTour
Input: tour , i, j
Result: tourUpdated , the updated tour

1 tourUpdated ← ϕ

2 tourUpdated ← tourUpdated ∪ tour [0, i − 1]
3 tourUpdated ← tourUpdated ∪ reverse(tour [i, j])

4 tourUpdated ← tourUpdated ∪ tour [j + 1, end]

5 return tourUpdated

4.3 Neighborhood 2-opt Exchange
The 2-opt algorithm is most probably the simplest local search algo-
rithm for solving TSP problem. The main idea, as mentioned earlier,
is considering a tour that crosses over itself and then re-order it such
that it does not. To implement this algorithm, at first we consider
an initial tour which can be obtained from other algorithms, such
as greedy algorithm. We call this tour as the current tour. Then, we
choose two breaking points i and j inside the tour with which we
can create a new tour by combining the following components:

• (1) Path from the beginning, node 1, to node (i − 1) with the
same order
• (2) Path from i to j in reverse order
• (3) Path from (j + 1) to the end

Afterwards, we calculate the cost of this new tour and if it is better
(less) than the current tour, we update the current tour. We continue
this procedure any new better tour cannot be found. This proce-
dure is demonstrated in Algorithm (4). Accordingly, Algorithm (5)
illustrates the main step of the 2-opt local search algorithm. The
time complexity of this algorithm is O(n2) because each node can
be exchanged with at most n − 1 other nodes and there are n nodes
in total. The space complexity is also remains O(n2).

Algorithm 5: 2-Opt-Exchange
Input: cities coordinates
Result: optimumTour ,minCost , the optimum tour and the

corresponding minimum cost of traveling

1 while (still can swap) do
2 minCost ← compute_cost(tour )

3 i ← 0
4 j ← i + 1

5 while (i < number_o f _nodes_can_swap) do
6 while (j < number_o f _nodes_can_swap) do
7 newTour ← UpdateTour(tour , i, j)

newCost ← compute_cost(newTour ) if
(newCost < minCost ) then

8 minCost ← newCost

9 optimumTour ← tour

10 end
11 end
12 end
13 end

14 return optimumTour ,minCost

4.4 Simulated Annealing
Simulated Annealing (SA) algorithm is the second local search al-
gorithm which is implemented in this project. This algorithm is a
stochastic local search approach inspired by the physical process of
annealing in metallurgy, which is a technique involving heating and
controlled cooling of a material to increase the size of its crystals
and reduce the defects. In the inspired SA algorithm, the main idea
is escaping from local optimums by allowing hill-climbing moves
to find the global optimum. In the metal annealing process, when
the temperature is high, atoms move around easily and when it is
cooling down, atoms move slower and start to find a configuration
with lower internal energy. Accordingly, the higher and lower tem-
perature in the metal is associated with more greater and smaller
probability of accepting worse neighboring solutions. In this way,
we can use this concept to implement a hill-climbing mechanism.
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The accepting criterion of a neighboring solution over current so-
lution can be obtained by the Metropolis condition,

Pr (s ′, s) =

{
1, if f (s ′) > f (s).

exp
{
f (s ′)−f (s)

T

}
, otherwise

where s ′ and s are new and old solutions, respectively, and T is
the temperature. This condition implies that the neighboring so-
lution is accepted if it has a greater evaluated value. However, if
the new solution is worse, we use a probability which is related
to the temperature T for deciding to accept the new solution. This
function is exponential and as the temperature is decreasing, the
probability of accepting a worse new solution is also decreasing.
Therefore, it is very important to determine and tune the effective
parameters, such as initial temperature, and decide how to decrease
the temperature and determine stopping criteria. The general steps
of the SA algorithm which is discussed in class is illustrated in
Algorithm (6).

Algorithm 6: Simulated Annealing

Input: problem, schedule
Result: solution, the optimum solution of the problem

1 currentSol ← Make_Node(Initial-State[problem])

2 while (The stopping criteria not met) do
// updating temperature

3 T ← schedule[t]

4 if (T = 0) then
5 return greedy(currentSol )
6 end

7 nextSol ← Random_Successor(currentSol)

8 ∆E ← f (nextSol) − f (currentSol)

9 if (∆E > 0) then
10 currentSol ← nextSol

11 else
12 currentSol ← nextSol with probability exp(∆ET )
13 end
14 end

15 return currentSol

To implement this algorithm, we start from a random initial
solution s0 and set the step counteri = 0 and the initial temperature
T0. We also need to calculate the initial evaluation f (s0) which is
the length of the initial solution. Now, we start the iterative pro-
cedure by setting T = Ti and forming the neighboring solution s ′

and computing its length f (s ′). Then, we can check the Metropo-
lis criterion and update the current solution, if it the criterion is
satisfied (∆E > 0 or the probability condition exp(∆ET ) is satisfied).
Afterwards, we proceed the iterations (i ← i + 1 and updating T )
until meeting the stopping criteria.

The time complexity of the implemented algorithm can be con-
sidered as O(n) because the while-loop is executed for specific
number of times which is typically less than the size of the problem

and the only calculation is evaluating the solution. Therefore, we
need O(n) operations. The space complexity of the implemented
algorithm is still O(n2) due to the adjacency (distance) matrix. The
required parameters have been tuned in a trial and error procedure.

5 EMPIRICAL EVALUATION
In this section, the outputs produced by the implemented algo-
rithms applied to a set of real world problems are studied. To have
a measure of the performance of the developed program, at first,
the specification of the platform is presented. Then, the numerical
results and evaluation plots are discussed.

5.1 Platform Specification
All programs are written in Python (version 3.7.3) and executed on
a MacBook Pro Laptop with the following specifications:
• OS: macOS Catalina (Version 10.15)
• Processor: 1.4 GHz Quad-Core Intel Core i5
• Memory: 8 GB 2133 MHz

5.2 File Structure
The dataset includes 13 different cities in the worlds with various
number of nodes. The nodes are specified by their coordinates. The
program is written in a modular fashion in which each algorithm
implemented as a separated class. The associated python files are
as follows,
• exhustive.py This file includes the Exhustive class to run
an exhustive search for solving TSP problem, which was not
a requirement in this project. I developed this class only for
testing and creating benchmarks for small size instances.

• branch_and_bound.py This file includes the BranchAnd-
Bound class to create and run the explained branch-and-
bound algorithms.

• heuristics.py This MST-Approximation algorithm is im-
plemented in the MinSpanningTreeApprox class in this file.

• local_search.py Both discussed local search algorithms
(2-opt and simulated annealing) are implemented in this file
in two separate classes, TwoOpt and SimulatedAnnealing,
respectively.

Furthermore, two other python files are developed separately which
are includes helper functions required by the implemented algo-
rithms:
• tsp_utils.py This file includes all the helper functions
required by various implemented algorithms including the
function to calculate the adjacency (distance) matrix, etc.

• visual_utils.py This file includes the helper functions
required for the visualization, which was not a requirement
in this project, but I added to improve my own understanding
of the data files. For instance, Figure (1) illustrates an initial
visualization after interpreting an input file.

The third type of developed files are the main executive files:
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Figure 1: Initial visualization of the nodes after interpreting
the coordinates of an input file (San Francisco)

• tsp_main.py This file is the main executive file that input
parameters as command arguments in terminal and after
calling the proper algorithm function and obtaining the solu-
tion, generates the two required types of output files (*.sol
and *.trace)

• driver.py Since there exist many input files and also there
are various (i) output files, (ii) numerical tables, and (iii)
evaluation plots which are required to generates for this
report, this executive file has been developed to facilitate
this procedure. In fact, this function automatically execute
tsp_main.pywith the proper argument and for all the input
files. then it gathers required information from multiple runs
and generates the required tables (and stores them in *.tex
files for LATEX) and the evaluation plots (and saves them
in *.png files). A complete execution of driver.py on a
platform with mentioned specification (Section 5.1) takes
less than 2 hours with cut_off_time equal to 600 seconds.

5.3 Comprehensive Tables
The numerical results of the developed program are presented in
this section. For each implemented algorithm, a separated table is
generated (automatically by driver.py) in which the first column
indicates the name of the problem instances (cities), the second
column is the elapsed run time that is less than the determined
cutoff time, the third column demonstrates the solution quality
which is the minimum total weight of the solution (tour) which has
been found within the given cutoff time, and the fourth column
demonstrates the relative error which calculated with the following
formula,

RelErr =
ALG −OPT

OPT
where ALG is the solution quality obtained by the corresponding
algorithm and OPT is the optimum solution quality which is the
weight of the optimum tour for the given problem instance. The

reported results of the local search algorithms are obtained by
taking the average of the elapsed running time and solution quality
over 15 independent runs (which have been done automatically by
driver.py).

• Branch-and-bound
The following table illustrates the numerical results of the
branch-and-bound algorithms with 10 minutes cutoff time
(600 S). It is obvious that most of the time the algorithm is
terminated in near cutoff time which shows that most prob-
ably the program could not find the exact optimum solution
within the given cutoff time. The relative error values prove
this hypothesis.

Dataset Time (s) Sol.Qual. RelErr

Atlanta 504.20 2575079 0.2851
Berlin 406.55 19233 1.5501
Boston 329.66 2203741 1.4663
Champaign 567.65 215760 3.0986
Cincinnati 0.27 277952 0.0000
Denver 398.75 540412 4.3809
NYC 217.97 7163135 3.6063
Philadelphia 109.82 3645073 25.1112
Roanoke 212.07 6849948 103.5076
SanFrancisco 230.36 5581318 5.8888
Toronto 333.10 9116969 6.7515
UKansasState 0.20 62962 0.0000
UMissouri 441.62 658567 3.9625

• MST-Approximation
The following table demonstrates the numerical results ob-
tained by the MST-Approximation algorithm. We can see
that the execution of this algorithm is much faster than
the branch-and-bound algorithm. As mentioned earlier, the
performance bound of the approximation algorithm is guar-
anteed and in the MST-Approximation is a 2-approximation
algorithm, where the numerical values of the relative errors
demonstrate this fact.

Dataset Time (s) Sol.Qual. RelErr

Atlanta 0.00 3278557 0.6362
Berlin 0.01 8468 0.1228
Boston 0.00 1701580 0.9043
Champaign 0.01 83154 0.5796
Cincinnati 0.00 307439 0.1061
Denver 0.02 199163 0.9831
NYC 0.01 2416459 0.5539
Philadelphia 0.00 252938 0.8119
Roanoke 0.18 126941 0.9367
SanFrancisco 0.02 1012907 0.2502
Toronto 0.03 2209635 0.8787
UKansasState 0.00 109994 0.7470
UMissouri 0.02 159463 0.2016

• Local Search: 2-opt
The numerical outputs of the 2-opt local search approach is
presented in the following table. This algorithm is the fastest
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one among implemented approaches; however, as expected,
the performance bound is not guaranteed and there are a
few cases in which the relative error is a large number.

Dataset Time (s) Sol.Qual. RelErr

Atlanta 0.00 2147827 0.0719
Berlin 0.00 9206 0.2206
Boston 0.00 1150295 0.2874
Champaign 0.00 78400 0.4893
Cincinnati 0.00 350839 0.2622
Denver 0.01 141909 0.4130
NYC 0.01 2030897 0.3060
Philadelphia 0.00 2211362 14.8409
Roanoke 0.14 902765 12.7732
SanFrancisco 0.02 1143100 0.4109
Toronto 0.02 1706840 0.4512
UKansasState 0.00 83218 0.3217
UMissouri 0.03 191385 0.4421

• Local Search: Simulated Annealing
The following table illustrates the numerical results obtained
by running the SA algorithm. Similar to the other imple-
mented local search algorithm, the performance bound is
not guaranteed but we can see, at least for the given set of
instances, it has a very impressive performance.

Dataset Time (s) Sol.Qual. RelErr

Atlanta 0.02 2045745 0.0210
Berlin 0.95 8361 0.1086
Boston 0.19 963238 0.0780
Champaign 0.52 54461 0.0345
Cincinnati 0.00 277952 0.0000
Denver 1.32 103761 0.0332
NYC 1.53 1594760 0.0255
Philadelphia 0.07 1400046 9.0291
Roanoke 10.98 733362 10.1887
SanFrancisco 3.80 866110 0.0690
Toronto 2.22 1193277 0.0146
UKansasState 0.01 62962 0.0000
UMissouri 4.64 142932 0.0770

5.4 Evaluation Plots
In this section, a set of evaluation plots are presented to study the
implemented local search algorithms. To obtain the meaningful
results to generate this plots 100 independent runs (with different
seed numbers) has been conducted by driver.py and the associ-
ated trace results are gathered and stored in some binary files. To
generate this results, two instances with more than 50 vertices are
chosen; Berlin.tsp and NYC.tsp where for each of them three
types of graphs are presented:

• Qualified Runtime for various solution qualities (QRTDs) in
which the x-axis is the run time in seconds, and the y-axis
is the fraction of the algorithm runs (in this case, out of 100
independent runs) that solved the problem with respect to
various relative solution quality q∗.

Figure 2: QRTD and SQD plots of 2-opt local search algo-
rithm obtained by 100 independent runs to solve Berlin in-
stance

Figure 3: QRTD and SQD plots of 2-opt local search algo-
rithm obtained by 100 independent runs to solve NYC in-
stance

• Solution Quality Distributions for various run-times (SQDs)
in which the x-axis the relative solution quality (q), and the
y-axis is the fraction of the algorithm runs that solved the
problem within various given running time (in seconds)

• Box plots which demonstrate the distribution of the running
times of the local search algorithms.

With this explanations, Figure (2) and (3) illustrate the QRTD and
SQD plots of 2-opt local search algorithm to solve Berlin and NYC
instances, respectively. We can see that both plots have the similar
behavior as described in class.
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Figure 4: QRTD and SQD plots of SA local search algorithm
obtained by 100 independent runs to solve Berlin instance

Figure 5: QRTD and SQD plots of SA local search algorithm
obtained by 100 independent runs to solve NYC instance

Figure (4) and (5) demonstrates the QRTD and SQD plots of simu-
lated annealing local search algorithm to solve the same instances.
For each local search algorithm, the plots shows almost the same
behavior for both instances. Comparing the plots for these two
local search approaches reveals that even though the running time
of the 2-opt algorithm is much less than the SA algorithm, the
solution quality obtained by SA algorithm in much better than the
solution quality of the 2-opt algorithm. The running times of these
algorithms are compared in box plots presented in Figure (6) and
(7). In both of the solved instances, the running time of the 2-opt
algorithm is much less than that of the SA algorithm.

Figure 6: The distribution of the running times of the local
search algorithms in 100 independent runs to solve Berlin
instance

Figure 7: The distribution of the running times of the local
search algorithms in 100 independent runs to solve NYC in-
stance

6 DISCUSSION
Most of the results and findings are discussed in the previous section.
The numerical results presented in the tables (Section 5.3) reveals
that although the branch-and-bound approach is an exact algorithm,
most of the time it cannot obtain the optimum solution within
limited running time. This shows that even the branch-and-bound
algorithm is very computationally expensive and works well only
for the very small size problems. According to the results, it is
obvious that the implemented lower bound is not good enough
and it is better to implement more rigorous lower bound which
in turn leads to better pruning and reducing the computational
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time. Essentially, the branch-and-bound algorithm can obtain the
exact optimal solution given enough time. However, as mentioned
in Section 4, the worst case time complexity remains the same as
that of the Brute Force approach which can take an extremely long
time to obtain the exact solution.

The approximation algorithms are a better alternative for solving
TSP problem; in particular, when a nearly optimum solution is
also acceptable. This algorithms provide a bound on the quality
of the obtained solutions. In this project the MST-Approximation
approach is implemented which is a 2-approximation algorithm
in O(n2) time. That implies that in the worst case, we obtain a
solution which its quality is 2 × OPT , where OPT is the optimal
quality. We can see that the numerical values of the relative errors
in the corresponding table of the MST-Approximation are less than
1 which proves this fact,

OPT ≤ ALG ≤ 2OPT ⇒ 0 ≤
ALG −OPT

OPT
≤

2OPT −OPT
OPT

= 1

In comparison to the approximation algorithms, the local search
algorithms are faster (as expected due to their theoretical time
complexity), but unfortunately there is no guaranteed bound for
their solution quality. In other words, we cannot be sure about the
solution quality and cannot know if it obtains a local minimum.
This can be seen in the numerical results that are presented for local
search algorithms. By comparing the tables and also the box plots,
it is obvious that the 2-opt algorithm is the fastest algorithm among
implemented algorithms, but the solution quality of the simulated
annealing algorithm is better than 2-opt approach.

7 CONCLUSION
In this project, four different approaches for solving the TSP prob-
lem have been discussed, implemented and their performance have
been studied, and the merits and trade-offs of each of them are
discussed. To summarize, the exact algorithms are very computa-
tionally expensive and can be employed only to solve small size
problems. In comparison to the exact algorithms such as branch-
and-bound, the approximation algorithms with guaranteed approx-
imation bound are very fast and a good alternative to solve the
TSP problem when a nearly optimum solution is enough. An ad-
vantage of this type of algorithms is that we can be sure that the
performance approximation is within a specific bound. The third
type of algorithms studied in this project is local search algorithms
which are impressively fast but there is no guaranteed bound on
their solution quality and there is no guarantee to obtain the global
optimum. It is also observed that using a hill-climbing technique, as
it used in simulated annealing algorithm, can effectively improve
the solution quality of local search algorithms.
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